

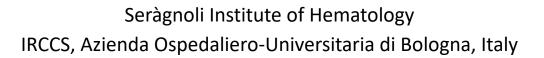
Novità dal Meeting della Società Americana di Ematologia

Verona
Palazzo della Gran Guardia
15-16-17 Febbraio 2024

COORDINATOR

Angelo Michele Carella Pier Luigi Zinzani BOARD SCIENTIFICO

Paolo Corradini Mauro Krampera Fabrizio Pane Adriano Venditti



Verona, 15-16-17 Febbraio 2024

CAR-T nel mieloma multiplo

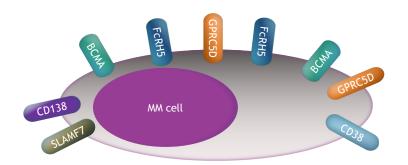
Elena Zamagni

Verona, 15-16-17 Febbraio 2024

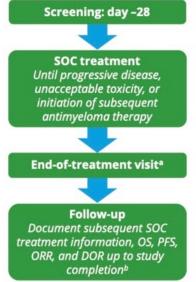
Disclosures of of ELENA ZAMAGNI

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
JANSSEN						х	х
BMS						x	x
PFIZER						х	x
SANOFI						x	x
ONCOPEPTIDE						Х	Х
GSK						х	х
MENARINI						x	x

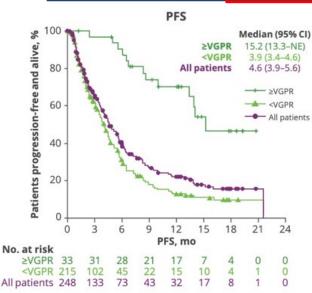
Current targets for CAR-T- in MM


BCMA

- BCMA is a member of the TNF receptor superfamily
- APRIL and BAFF are known ligands, leading to activation of the NF-kB pathway
- BCMA promotes plasma cell survival, growth, resistance to apoptosis, adhesion, and angiogenesis
- γ-secretase cleaving causes shedding of soluble BCMA
- BCMA is expressed on malignant PCs, at low levels on normal PCs and mature B lymphocytes and is absent in nonhematological tissues

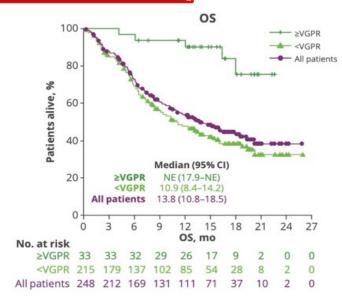

Cancer Cell. 2017;31;383-95. 7. Bruins WSC, et al. Front Immunol. 2020;11:1155. 8. Lancman G, et al. Blood Cancer Discov. 2021;2:423-33.

GPRC5D


- GPRC5D is a member of the G proteincoupled receptor family with an unknown function
- It is highly expressed on malignant PCs, as well as hard keratinized structures (hair shaft, nail, and central region of the tongue)

LocoMMotion: Real-life current standards of care in patients with RRMM who received ≥3 prior lines of therapy

^aEnd-of-treatment visit is defined as ~30 days after completion of the last dose of the first SOC therapy used within the study. ^bEnd of the study is defined as 24 months after the first dose of SOC treatment for the last patient included in the study, except in cases of patient death that would end the study early. DOR, duration of response.

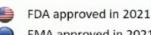


Median age: 68 years

Median prior lines: 4 (2–13)Triple-class refractory: 73.4%

ORR: 31.5%

mDOR: 7.7 months



BCMA-targeting CAR-T cells

	Approved CARs		Phase 3		Academic	Alternative	Short manufacturing		Allo-CAR
	Ide-cel KarMMa ¹ (n = 196)	Cilta-cel CARTITUDE-1 ² (n = 97)	Ide-cel KarMMa-3 ³ (n = 254)	Cilta-cel CARTITUDE-4 ⁴ (n =208)	ARI0002h ⁵ (n = 30)	CART- ddBCMA ⁶ (n = 31)	FasT CAR-T GC012F ⁷ (n=29)	PHE885 ⁸ (n= 50)	ALLO-715 UNIVERSAL ⁹ (n = 43)
Phase	II	Ib/II	III	III	I/II	1/11	1	- 1	1
Target	BCMA	ВСМА	BCMA	ВСМА	BCMA	BCMA	BCMA/CD19	GPRC5D	BCMA
scFv	Chimeric mouse	Chimeric llama	Chimeric mouse	Chimeric llama	Humanized	Synthetic protein	Not specified	Human	Human
Co-stim	4-1BB	4-1BB	4-1BB	4-1BB	4-1BB	4-1BB	NA	4-1BB	4-1BB
Specificity	Autologous	Autologous	Autologous	Autologous	Autologous	Autologous	Autologous	Autologous	Allogenic
	Ide-cel CAR design Description of the control of t	100	Idenced CAR clension Ansi Ecolo (CD) Ansi Ecolo (CD)	VHH (VHH	V L V. Hange TM 4-18B	TATE AND COX	BCMA-COHI Deal CAA-T Inter CDA-CH Inter CDA-CH	Pully human — BCMA Pully human — COS — COS zeta—	Staurnas magners of an existing and an existing an existing and an existing an existing an existing an existing an existing and an existing an existing an existing an existing an existing and an existing an existing an existing an existing an existing and existing an existing a

^{1.} Munshi N, et al. ASCO 2020; 2. Usmani S, et al. ASCO 2022; 3. Rodrigues Otero, EBMT 2023; 4. Einsele H, et al. ASCO 2023; 5. Fernández de Larrea C, et al. EHA 2022; 6. Frigault MJ, et al. ASCO 2022; 7. Li C, et al. EHA 2022; 7. Du J, et al. ASCO 2022; 8. Sperling et al. ASCO 2023; 9. Huang H, et al. ASCO 2022;

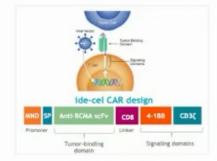
Ide-cel approval: the KarMMa trial

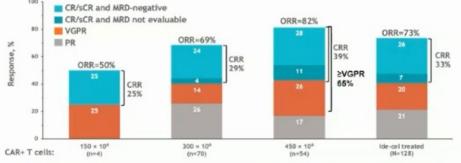
Second generation CAR-T cell, anti-BCMA murine scFv, 4-1BB costimulatory domain

	KarMMa, phase 2 study (N = 128)					
Median prior lines: 6 (3-16)	84% of patients were triple-class refractory	Bridging possible Flu-Cy lymphodepletion				

Ide-Cel-1

Any Grade


117 (91)


89 (70)

81 (63)

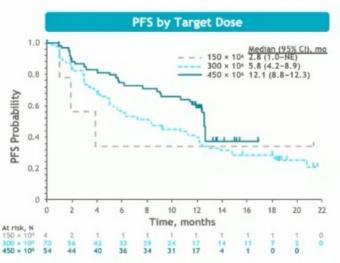
107 (84)

23 (18)

AE,* n (%)

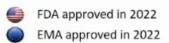
Hematologic

Anemia

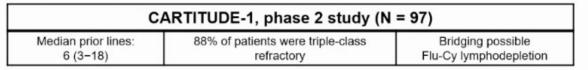

Neurotoxicity

CRS

Neutropenia

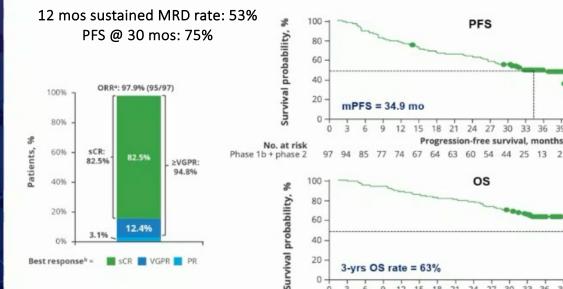

Thrombocytopenia

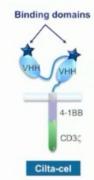
0.4	ide-cell treate (N=128)
reate	d (N=128)
	Grade ≥3
	114 (89)
	77 (60)
	67 (52)
	7 (5)
	4 (3)



mOS = 24.8 mo

Cilta-cel approval: the CARTITUDE-1 trial

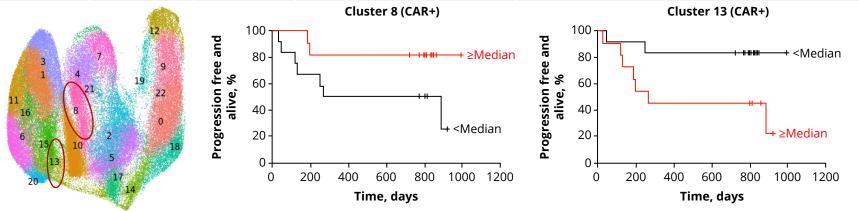

Second generation CAR-T cell, 2 anti-BCMA camelid VHH single domains, 4-1BB costimulatory domain


9 12 15 18 21 24 27 30 33 36 39 42 45 48

Overall survival, months

91 88 85 81 79 77 74 69 59 33 19 10

Phase 1b + phase 2


AE = /9/1	Cilta-cel-Treated (N=97)				
AE, n (%)	Any Grade	Grade ≥3			
Hematologic					
Neutropenia	93 (96)	92 (95)			
Anemia	79 (81)	66 (68)			
Thrombocytopenia	77 (80)	58 (60)			
CRS	92 (95)	6 (5)			
Neurotoxicity	20 (21)	10 (10)			

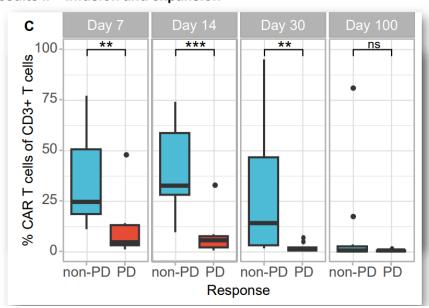
Berdeja J, et al. Lancet 2022; Lin Y, et al. ASCO 2023

QUALITY OF CART COMPOSITION: DATA FROM CLINICAL TRIAL (CARTITUDE-1)

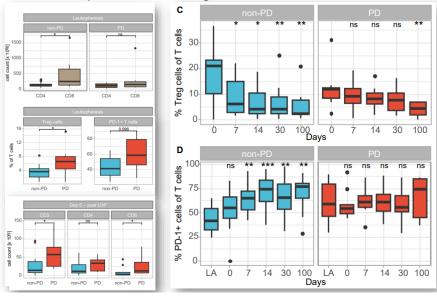
Longer PFS Was Associated With a CAR+CD8+ Stem Cell-Like Phenotype in the Drug Product

Cluster	Hazard ratio	<i>P</i> value	Marker	Phenotype
8	0.62	0.032	CD8+TCF7+LEF1+CCR7+	CAR+CD8+ stem cell-like T cells with ability to proliferate into T_{cm} and T_{em}
13	1.62	0.006	CD4+FOXP3+	CAR+CD4+ Treg cell-like phenotype
			Cluster 8 (CAR+)	Cluster 13 (CAR+)

Longer PFS was directly associated with a CAR+CD8+ T-stem cell-like phenotype and inversely correlated with a CAR+CD4+ Treg cell-like phenotype in the drug product

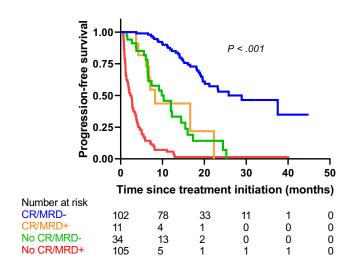


QUALITY OF CART COMPOSITION: data from real life (ide-cel)


Novità dal Meeting della Società Americana di Ematologia

Verona, 15-16-17 Febbraio 2024

Results II - Infusion and expansion



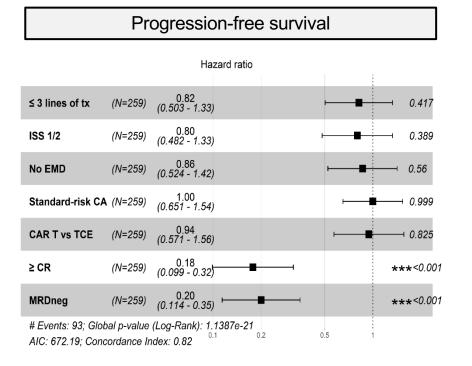
Results III - Apheresis, LDP, Tregs and PD1

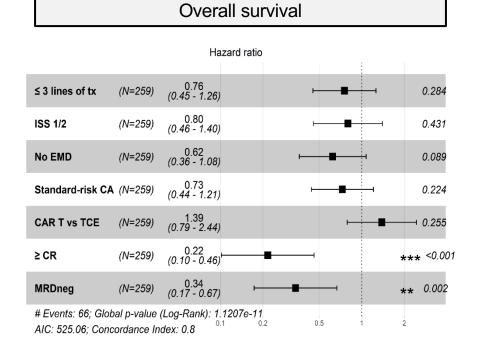
- Real-life analysis on 25 pts treated with ide-cel: early relapse vs long-term disease control
- CAR-T cell expansion is associated with response
- Differences between responders and non-responders can be identified at time of leukapheresis
- **Depletion of Tregs and increase of PD1** expression is associated with response

Role of MRD in RRMM pts treated with CAR T cells and TCE

Group	Median PFS
CR/MRD-	29
CR/MRD+	8
No CR/MRD-	10
No CR/MRD+	2

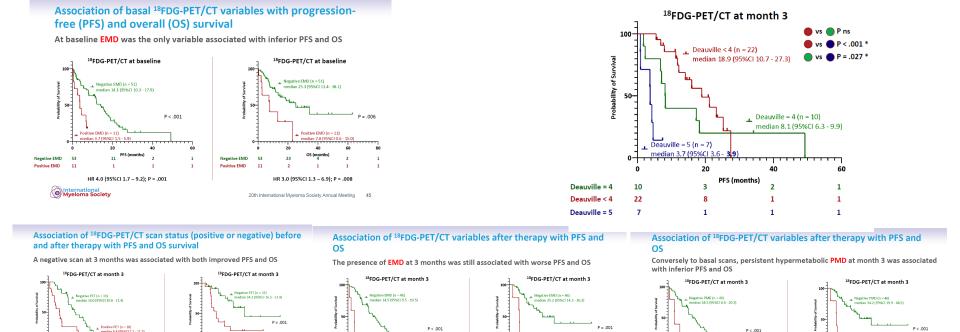
veral survival	.75-	7	\	P < .001		_
0	.00+	I	ı	ı	ı	\neg
	0	10	20	30	40	50
	Time	since t	reatmen	ıt initiati	on (moi	nths)
Number at risk CR/MRD- CR/MRD+ No CR/MRD- No CR/MRD+	102 11 34 105	82 6 20 30	47 3 7 11	20 2 2 4	5 1 0 2	1 0 0 1


Group	Median OS
CR/MRD-	NR
CR/MRD+	34
No CR/MRD-	16
No CR/MRD+	6


Prolonged survival in patients achieving CR and undetectable MRD

- Retrospective real-life analysis of 259 patients with RRMM treated with TCR therapies in Spain between 2017-203
- Median follow-up, 11 months

CR and MRD status are the most relevant prognostic factors


Multivariate analysis

 In contrast to newly-diagnosed MM, achieving CR does matter in MRD negative RRMM patients with respect to response durability after CAR T cells and TCE

Definition of PET imaging response in patients receiving CARTs

• Retrospective analysis on 62 pts treated in Spain with anti-BCMA CARTs (2018-2023), studied by FDG PET/CT at baseline, @ 1 mos (92%) and @ 3 mos (82%)

HR 18.4 (95%CI 5.1 - 67); P < .001

International Myeloma Society . Positive EMD (n = 5)

HR 5.4 (95%CI 1.7 - 16.9); P = .004

20th International Myeloma Society Annual Meeting

HR 7.5 (95%CI 2.5 - 22.2): P < .001

79% PET pos baseline, 58% @ 1 mos, 35% @ 3 mos

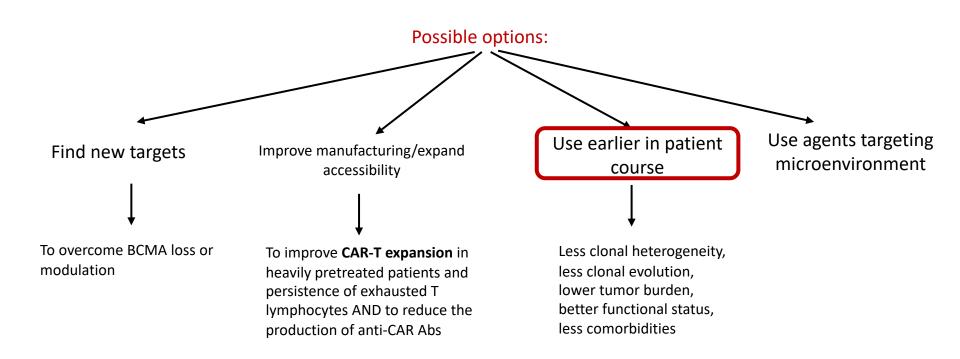
HR 0.3 (95%CI 0.1 - 0.6); P = .003

20th International Myeloma Society Annual Meeting 47

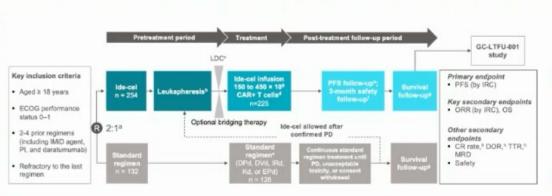
No role on PFS of early 1 mos PET

HR 0.5 (95%CL0.2 - 0.9): P = .021

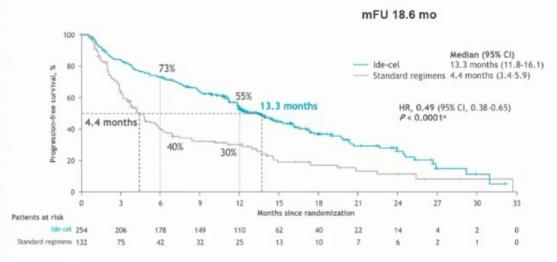
HR 9.9 (95%CI 3.2 - 30.7): P < .001


20th International Myeloma Society Annual Meeting 49

Verona, 15-16-17 Febbraio 2024


Outcomes of BCMA-Directed CART Therapy in Patients with RRMM with EMD

- Real life analysis on 132 pts treated with ide-cel and cilta-cel as per SOC
- 48% (64 pts) previous/current EMD prior to CART; pair matched with rest of population
- No difference in toxicities (CRS, ICANS, infections)
- No difference in response rate/CR rate
- Significantly shorter PFS and OS (p = 0.02 and 0.03, respectively)
- Studies on mechanisms of resistance and influence of extra-medullary microenvironment on relapse/resistance currently on-going


Further developments in CAR-Ts use in MM

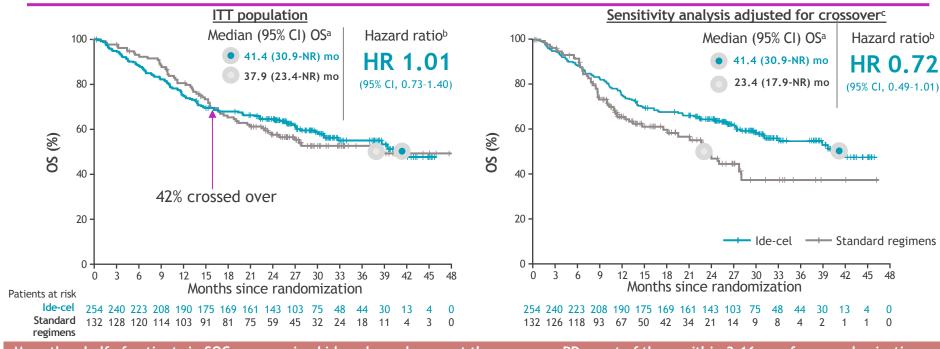
KarMMa-3, phase 3 trial (2-4 prior lines)

Characteristic	Ide-cel (n = 254)	Standard regimens (n - 132)
Median (range) age, years	63 (30-81)	63 (42-83)
Sex, male, n (%)	156 (61)	79 (60)
Median (range) time from diagnosis to screening, years	4.1 (0.2-21.8)	4.0 (0.7-17.7)
High tumor burden, n (%)°	71 (28)	34 (26)
Extramedullary disease, n (%) ^b	61 (24)	32 (24)
High-risk cytogenetics, n (%) ^c	107 (42)	61 (46)
det(17p)	66 (26)	42 (32)
t(4;14)	43 (17)	18 (14)
t(4;16)	8 (3)	4 (3)
Refractory status, n (%)		
IMiD agent refractory	224 (88)	124 (94)
PI refractory	189 (74)	95 (72)
Daratumumab refractory ^a	242 (95)	123 (93)
Double-class refractory ^b	169 (67)	91 (69)
Triple-class refractory=	164 (65)	89 (67)

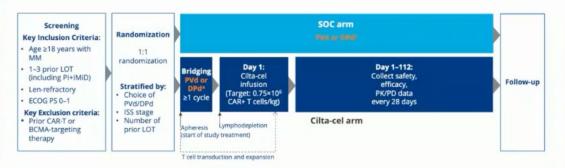
		Ide-cel (n = 250)		Standard regimens (n = 126)		
All-cause AEs occurring in ≥ 20% patients, n (%)	Any grade	Grade 3/4	Grade 5	Any grade	Grade 3/4	Grade 5
Any	248 (99)	233 (93)	36 (14)	123 (98)	94 (75)	8 (6)
Other						
Infections	146 (58)	61 (24)	11 (4)	68 (54)	23 (18)	3 (2)
Upper respiratory tract infections	29 (12)	4 (2)	0	9 (7)	0	0
Pneumonia	26 (10)	18 (7)	2 (1)	9 (7)	5 (4)	0

	lde-cel (n = 225)
CRS, a n (%)	
Any grade	197 (88)
Grade 3/4	9 (4)
Grade 5	2 (1)
iiNT,c n (%)	
Any grade	34 (15)
Grade 3/4	7 (3)
Grade 5	0

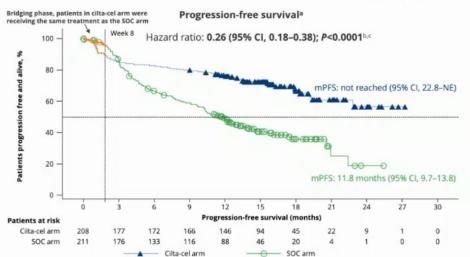
Giralt et al. ASTCT 2023, Rodrigues Otero et al. NEJM 2023


Progression-free survival (ITT and high-risk subgroups)

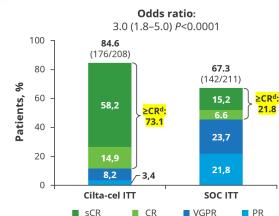
Median PFS was longer in patients treated with ide-cel vs standard regimens in the overall population and high-risk subgroups; interpretation in patients with R-ISS stage III disease was limited due to small subgroup size

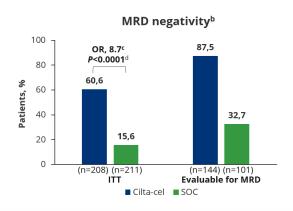

PFS was analyzed in the ITT population of all randomized patients in both arms and included early PFS events occurring between randomization and ide-cel infusion. PFS based on IMWG criteria per IRC. Based on Kaplan-Meier approach; Unstratified HR based on univariate Cox proportional hazard model. Cl is two-sided; Based on stratified log-rank test. IMWG, International Myeloma Working Group. 1. Rodríguez-Otero P, et al. N Engl J Med 2023;388:1002-1014.

OS analysis confounded by substantial crossover

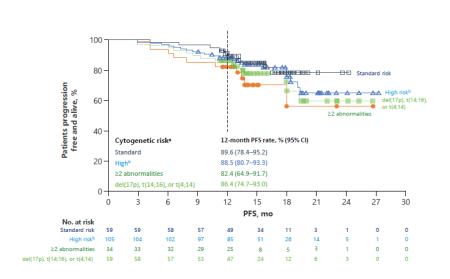


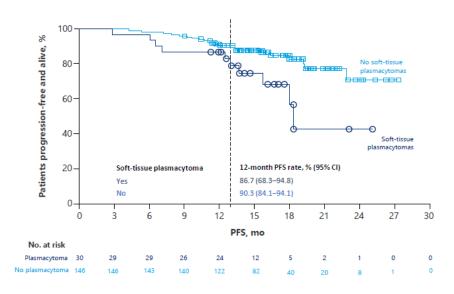
More than half of patients in SOC arm received ide-cel as subsequent therapy upon PD, most of them within 3-16 mos from randomization Prespecified crossover-adjusted analysis shows OS benefit of ide-cel Early deaths in ide-cel arm occurred in pts with multiple high-risk features, due to PD, and mostly in patients who never received ide-cel (value of bridging therapy)


CARTITUDE-4, phase 3 trial (1 to 3 prior lines)



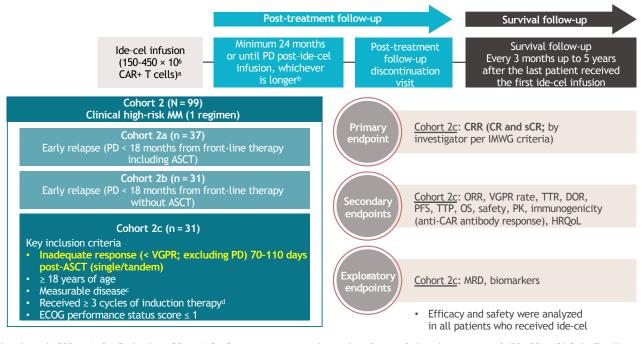
mFU 15.9 mo


Overall response ratea,b,c



Dhakal et al. ASCO 2023

CARTITUDE-4 As-Treated Population: The 12-Month PFS Rate in Patients With High-Risk Cytogenetics and EMD

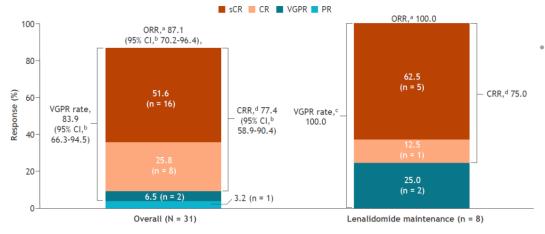

NOT Two of the Same Kind

	CARTITUDE-4 ^[1]	KARMMA-3 ^[2]
LOT eligibility	1-3	2-4
Exposure eligibility	IMiD and PI	IMiD, PI, anti-CD38
Refractoriness eligibility	Lenalidomide	Last line
Age	61.5	63
Median prior LOT	2	3
Refractory to anti-CD38	24%	95%
Refractory to IMiD	100%	88%
Triple-class refractory	14%	65%
t(4;14), t(14;16), or del(17p)	35%	42%
Extramedullary plasmacytoma	21%	24%
Carfilzomib allowed control arm	No	Yes
CAR T on control arm after PD	No	Yes
ORR of control arm	67%	42%
mPFS of control arm (mo)	11.8	4.4
HR for PFS (95% CI)	0.26 (0.18-0.38)	0.49 (0.38-0.65)

^{1.} San-Miguel J, et al. N Engl J Med. 2023;389:335-347; 2. Rodriguez-Otero P, et al. N Engl J Med. 2023;388:1002-1014.

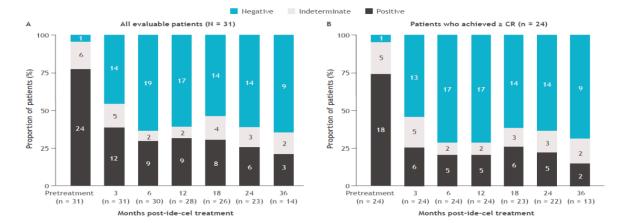
KarMMa-2 cohort 2: ide-cel for "functional" HR MM

NOTION Access to change 1 and 1 and



 a After lymphodepletion (cyclophosphamide 300 mg/m² + fludarabine 30 mg/m² × 3), patients received a single infusion of ide-cel at a range of 150-450 × 10 6 CAR+ T cells (up to an additional 20%; 20% over the protocol-specified dose constituted overdose); b At investigator discretion, patients could receive maintenance treatment post-infusion; c Measurable disease determined by M protein (serum protein electrophoresis \geq 0.5 g/dL or urine protein electrophoresis \geq 200 mg/24 hours) and/or light chain MM without measurable disease in serum or urine (serum immunoglobulin free light chain \approx 10 mg/dL and abnormal serum immunoglobulin \approx 10 mg/dL and dexamethasone.

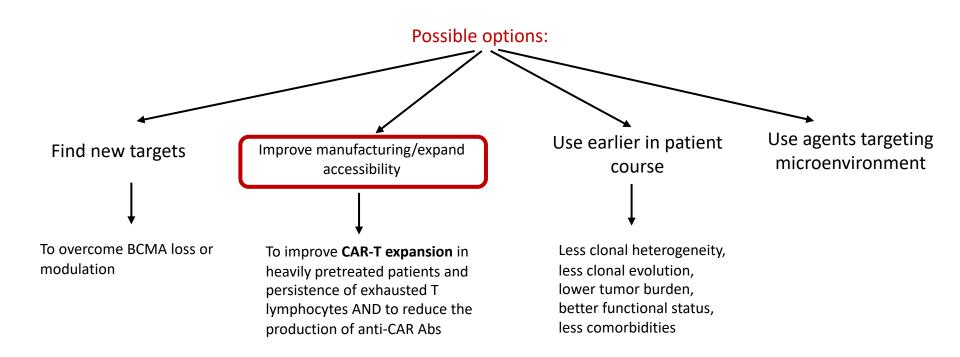
ASCT, autologous stem cell transplantation; CAR, chimeric antigen receptor; CR, complete response; CRR, complete response rate; DOR, duration of response; ECOG, Eastern Cooperative Oncology Group; HRQoL, health-related quality of life; ide-cel, idecabtagene vicleucel; IMiD, immunomodulatory drug; IMWG, International Myeloma Working Group; MM, multiple myeloma; MRD, minimal residual disease; ORR, overall response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PI, proteasome inhibitor; PK, pharmacokinetics; sCR, stringent complete response; TTP, time to progression; TTR, time to response; VGPR, very good partial response.


Provided by BMS in response to unsolicited requests only.

Best ORR and MRD in cohort 2c

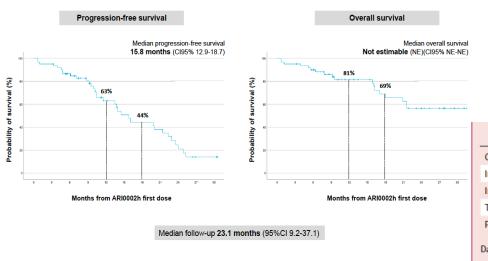
- With a median follow-up of 39.4 months, median DOR and PFS NR
 - 36 months DOR 81%, PFS 77%
 - 12 and 24 months sustained MRD 71% and 64%

KARMMA-9 phase III R trial ide-cel vs len currently on-going


Longer-Term Findings From CARTITUDE-2 in Different Early Treatment Settings

Updated Efficacy: Patients Receiving 1-3 Prior Lines of Therapy (Cohort A) and Those With Early Relapse After 1L Treatment (Cohort B)¹

- Patients treated with cilta-cel in earlier LOT in cohort A and B experienced deep and durable responses
- No new CAR-T-related safety signals, except for 1 additional CAR-T cell neurotoxicity in cohort B, were reported


	Cohort A (N = 20)	Cohort B (N = 19)
Follow-up (mo), median (range)	29.9 (3.3-35.6)	27.9 (5.2-32.1)
Overall MRD negativity (10 ⁻⁵), n (%)	17 (100)	14 (93.3)
Sustained MRD negativity ≥6 mo (10 ⁻⁵), n (%)	8 (40.0)	10 (52.6)
Sustained MRD negativity ≥12 mo (10 ⁻⁵), n (%)	7 (35.0)	7 (36.8)
ORR, % (95% CI)	95.0 (75.1-99.9)	100.0 (82.4-100)
sCR, % (95% CI)	85.0 (62.7-96.8)	73.7 (48.8-90.9)
CR, % (95% CI)	5.0 (0.1-24.9)	15.8 (3.4-39.6)
VGPR, % (95% CI)	5.0 (0.1-24.9)	10.5 (1.3-33.1)
PR, % (95% CI)	0	0
DOR (mo), median (95% CI)	NE (23.4-NE)	NE (23.7-NE)
24-mo DOR rate, % (95% CI)	73.3 (47.2-87.9)	70.5 (42.5-86.7)
PFS (mo), median (95% CI)	NE (12.9-NE)	NE (22.6-NE)
24-mo PFS rate, % (95% CI)	75.0 (50.0-88.7)	73.3 (47.2-87.9)
OS (mo), median (95% CI)	NE (21.9-NE)	NE (NE-NE)
24-mo OS rate, % (95% CI)	75.0 (50.0-88.7)	84.2 (58.7-94.6)

Further developments in CAR-Ts use in MM

Ari0002h: BCMA-CART in RRMM patients: academic experience

- 60 RRMM pts after a median of 3PL, 18% EMD, TCR 59%
- Manufacturing process: 10 days. Median turnaround time, defined as days from apheresis reception to product liberation, was 41 days.
- Infusion was fractionated 10-30-60% to mitigate toxicity
- Second dose 4 months after the first infusion

Median PFS in:

-TCR: 14.5 months

- HRCA: 10.4 months

- EMD: 6.1 months

None of the pts lost BCMA at relapse

• 32% of patients relapsed and CAR-T was detectable

	Grade 1	Grade 2	Grade 3-4	
Cytokine release syndrome	15/24 (63%)	9/24 (38%)	0	
Immune effector cell-associated neurotoxicity syndrome	0	0	0	
Infusion reaction	1/30 (3%)	0	0	
Tumour lysis syndrome	0	1/30 (3%)	0	
Persistent cytopenias	0	0	20/30 (67%)	
Data are n (%). Adverse events of special interest are depicted per MedDRA preferred term.				

The academic humanised BCMA CAR-T overcomes basically all challenges we have with CAR-T cells: costs, affordability and manufacturing timing

«Next generation» anti-BCMA CART

CC-98633/BMS-986354 is a BCMA CAR T-cell drug product that contains a fully human CAR construct and is manufactured using the NEX-T™ process (shorten manufacturing and improved potency)

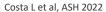
- enriched in less-differentiated memory subtypes, composed primarily of naive-like and central memory CART cells, and fewer
 effector and terminally differentiated CART cells
- has ~10-fold increased proliferative capacity
- has superior tumor control at equivalent CAR T cell dose

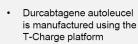
NEX-T and T-Charge Platforms: BMS986354 and Durca-cel

BCMA-targeted fully human CAR construct

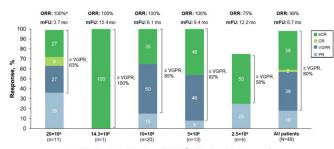
Anti-BCMA domain³

CD8 hinge/transmembrane domain³

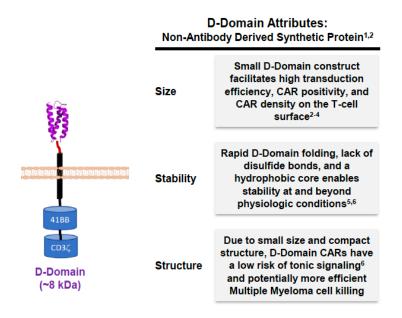

4-1BB³,4

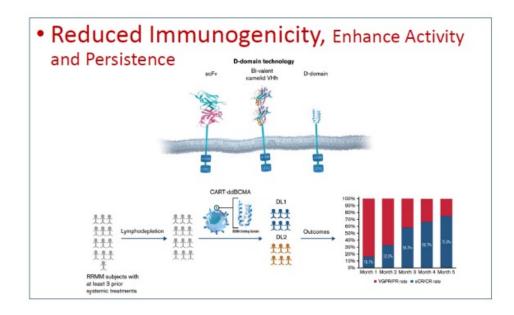

CD3-7³,4

Wh


What if CAR-T Could Be Manufactured Faster?

Phase 1 Study Results of Durcabtagene Autoleucel , a T-Charge Manufactured BCMA-Directed CAR-T Cell Therapy, for Patients With RRMM¹



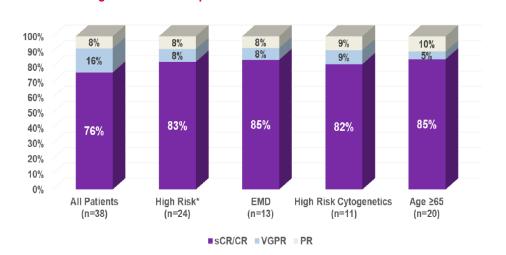

- Reduces ex vivo culture time to about 24 hours and takes <2 days to manufacture
- Relies entirely on in vivo expansion after CAR-T cell infusion

All but 1 patient at the dose of 2.5×10⁶ achieved a clinical response^b

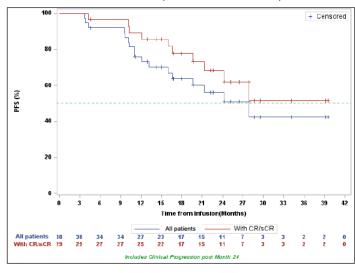
ANITO-CEL: Phase 1/2 Study of CART-ddBCMA for the Treatment of Patients with RRMM

Anito-cel utilizes a novel, synthetic, compact and stable **D-Domain** binder

D-Domain facilitates high CAR surface expression, low risk of "basal, tonic" signaling

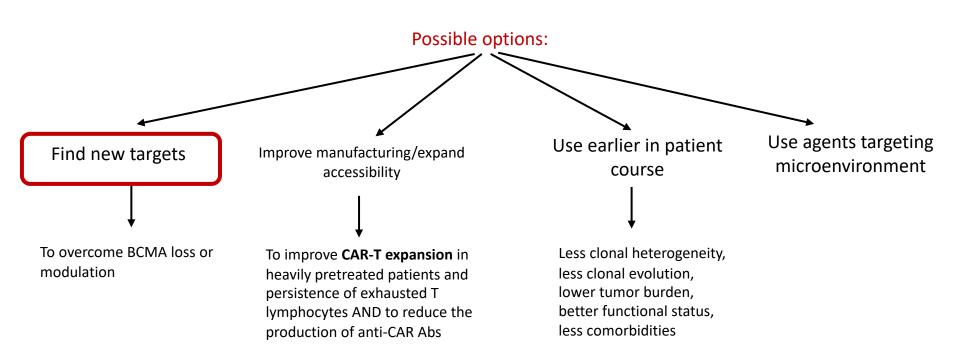

Recommended Phase 2 Dose selected as 115±10 million CAR+ T cells

- 38 RRMM patients all of them TCR received two dose levels of Anito-cel
- Median number of prior lines: 5
- EMD: 34%; ISS III: 18%; High tumor burden: 24%
- 68% of patients received bridging therapy


Frigault M, et al. ASH 2023 (Abstract No. 1023 - oral presentation)

ANITO-CEL: Phase 1/2 Study of CART-ddBCMA for the Treatment of Patients with RRMM

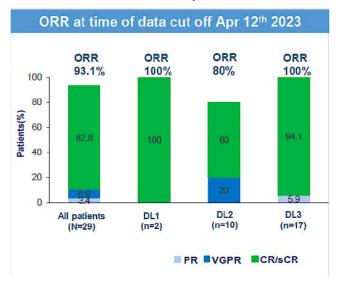
Anito-cel Phase 1 Results: Best Overall Response All Patients & High-Risk Sub-Groups



PFS (median f/u: 26 m)

- Median PFS for all pts has not been reached
- 89% (25/28) evaluable patients reached MRD-ve

Further developments in CAR-Ts use in MM

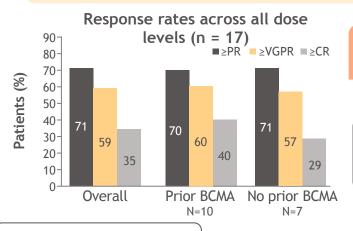


BCMA/CD19 Fast CART GC012F

Dual targeting

- GC012F targets both BCMA and CD19
- Dual specificity approach to maximize efficacy
- GC012F showed stable CAR expansion and effective functionality

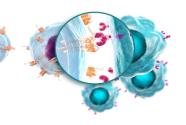
BCMA/CD19 FAST phase 1 trial

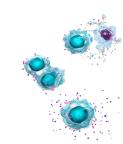


- N=29 R/R MM, 97% heavily pre-treated, with 93% refractory to their last therapy.
- ORR 93%, with 38% of patients achieving MRD negativity
- Median DOR 38 mos
- CRS 86.2%, mostly Gr ≤2; no ICANS

MCARH109 (GPRC5D-targeted CAR T cell therapy)

Phase 1 first-in-class trial in RRMM


Key inclusion criteria: RRMM ≥3 prior lines, prior IMiDTM agent, prior PI and anti-CD38 mAb. Key baseline characteristics; median age: 60y (38-76); high-risk cytogenetics: 76%; EMD, 41%, median prior lines: 6 (4-14); prior BCMA: 59%; prior BCMAtargeting CAR T cells: 47%; triple-class refractory 94%



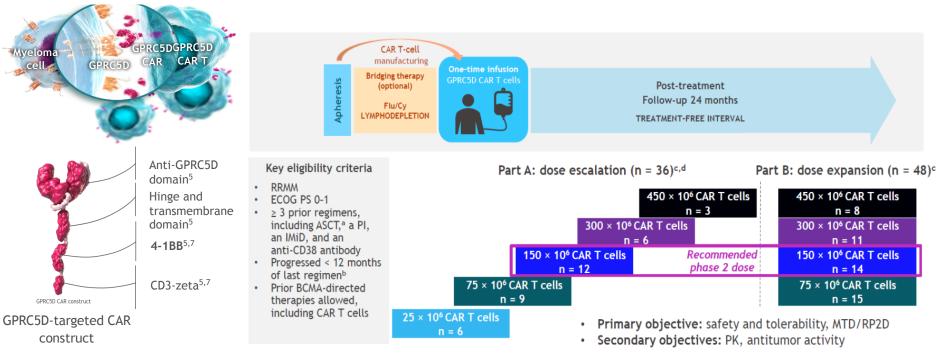
Schedule: dose escalation: 25×10^6 (n = 3); 50×10^6 (n = 3); 150×10^6 (n = 6); 450×10^6 (n = 5)

Response over time

50% of patients were MRD negative

AEs any grade (grade \geq 3) (n = 17):

- CRS 88% (6%)
- Neurological complications 6% (6%)
- MAS 6% (6%)
- Infections 18% (12%)
- Cerebellar toxicity (GPRC5D in inferior olivary nodule)


- Dysgeusia (grade 1) 12% Maculopapular rash (grade 1) 18%
- Neutropenia (grade ≥ 3) 100%
 - Nail changes (grade 1) 65% Thrombocytopenia (grade ≥ 3) 65%

More frequent loss or reduced expression of GPRC5D at relapse

«Next generation» anti-GPRC5D CART

BMS-986393 (CC-95266), a GPRC5D-targeted autologous CAR T-cell therapy, in patients with R/R MM, phase I/II study


BMS-986393 mechanism of action

84 pts (26 at 150 dose), 5 median prior LOT, median follow-up:9 months

46% any prior anti-BCMA therapy (36% CAR-T)

Efficacy

ORR in subgroups of interest (all dose levels)

Disease characteristic, % (n/N)	Present	Absent
Prior BCMA treatment	78% 25/32	95% 39/41
Extramedullary disease	84% 26/31	91% 38/42
High-risk cytogenetics ^b	83% 24/29	91% 40/44
Triple-class refractory	88% 50/57	88% 14/16

Median DOR 13 mos

Toxicity

	All treated patients (n = 84)		150 × 10 ⁶ CAR T cells (n = 26)		
	Any grade	Grade 3/4	Any grade	Grade 3/4	
TEAE, n (%)	77 (91.7)	69 (82.1)	26 (100)	24 (92.3)	
Hematologic TEAEs (≥ 30% of all treated patients), n (%)					
Neutropenia	54 (64.3)	52 (61.9)	20 (76.9)	18 (69.2)	
Anemia	40 (47.6)	25 (29.8)	13 (50.0)	11 (42.3)	
Thrombocytopenia	36 (42.9)	22 (26.2)	10 (38.5)	5 (19.2)	
Non-hematologic TEAEs (≥ 3	Non-hematologic TEAEs (≥ 30% of all treated patients), n (%)				
CRS	64 (76.2)	3 (3.6)	23 (88.5)	0 (0)	
Infections and infestations	34 (40.5)	11 (13.1)	9 (34.6)	3 (11.5)	
Hypokalemia	31 (36.9)	4 (4.8)	12 (46.2)	2 (7.7)	
Hypocalcemia	28 (33.3)	2 (2.4)	7 (26.9)	0 (0)	
Headache	27 (32.1)	1 (1.2)	8 (30.8)	0 (0)	
Hypophosphatemia	26 (31.0)	2 (2.4)	11 (42.3)	1 (3.8)	

TEAEs related to BMS-986393	All treated patients (n = 84)		150 × 10 ⁶ CAR T cells (n = 26)	
On-target/off-tumor, n (%)	Any grade	Grade 3/4	Any grade	Grade 3/4
Dysgeusia/taste disorder	21 (25.0)	0	8 (30.8)	0
Skin ^a	17 (20.2)	0	4 (15.4)	0
Nails ^b	11 (13.1)	0	3 (11.5)	0
Dysphagia	3 (3.6)	0	1 (3.8)	0
Neurotoxicity, n (%)	Any grade	Grade 3 only	Any grade	Grade 3 only
ICANS-type neurotoxicity ^c	8 (9.5)	2 (2.4)	1 (3.8)	0
Non-ICANS-type neurotoxicity ^d	9 (10.7)	3 (3.6)	4 (15.4)	1 (3.8)

Verona, 15-16-17 Febbraio 2024

CONCLUSION

- CARTs, within new immune therapies, represent a new standard of care, after 3/4 line of treatment, where they significantly improved survival outcomes
- 2 anti-BCMA CARTs, ide-cel and cilta-cel, are FDA and EMA approved for RRMM who received at least 3/4 prior LOT;
 anti-GPRC5D CARTs are under investigation
- Multiple on-going programs include combinations and earlier lines of treatments, since diagnosis; this strategy may improve/overcome "functional" HR MM
- «Next generation» CARTs, with improved and faster manufactoring, showed impressive efficacy and lower toxicity
- Tailoring and sequencing immunotherapies for RR/MM is an on-going challenge
- Limited access to CAR-T cells remains a challenge in real-life clinical practice

THANKS!

Istituto di Ematologia Seràgnoli

Prof. Michele Cavo

Myeloma Research Group

Myeloma Clinical Research Group

Elena Zamagni
Paola Tacchetti
Lucia Pantani
Katia Mancuso
Ilaria Rizzello
Emanuele Favero
Marco Talarico
Flavia Bigi
Ilaria Sacchetti
Enrica Manzato
Simone Masci
Roberta Restuccia

Lab of Cytogenetics

Nicoletta Testoni Giulia Marzocchi

Lab of Cellular Biology

Enrica Borsi

Lab of Molecular Biology

Carolina Terragna Marina Martello Vincenza Solli Andrea Poletti Ilaria Vigliotta Silvia Armuzzi Barbara Turisano Ignazia Pistoia Gaia Mazzucchetti

Data Management

Simona Barbato Giorgia Lazzarini Francesca Trombetta Alessandra Scatà Nicola Parisi Nicola Paprusso

CAR-T Research Unit (F. Bonifazi)